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Aspects of analysis and simulation of a wing 

ditching scenario 
 

Argiris Kamoulakos1 
MH370-CAPTIO Team Member, Paris, France (akamoulakos@yahoo.com) 

This paper is a follow-up of the paper titled “Aspects of analysis and simulation of a 

flaperon ditching scenario” presented in the Aviation Forum 2020, which proposed a modified 

definition of the added-mass in the Von-Karman-wedge water impact theory. It is again 

inspired by the recovery of the MH370 Boeing 777 right wing flaperon debris and the 

associated speculation of a possible failed ditching. The limitations of the previous publication 

regarding only bodies with infinite mass is removed and the proposed modified added mass 

version of the Von Karman theory is reworked for a flat plate of finite mass. This leads to a 

new set of simple analytical relations for the evolution of the hydrodynamic force with depth 

of immersion as a function of the plate horizontal and vertical speeds and the angle of impact. 

The analytical estimates of the hydrodynamic force at first impact and beyond were validated 

numerically through simulations with the Smoothed Particle Hydrodynamics (SPH) method 

and were found very encouraging. The existence of an equivalence between the hydrodynamic 

force evolution for ditching and an “equivalent” vertical slamming is re-established through 

analytical means and demonstrated through simulation. Finally, the analytical expressions for 

the hydrodynamic force versus depth of immersion thus obtained were applied to a simplified 

elastic B777-type wing model in ditching in order to estimate the maximum tip deflections 

thus providing a conservative envelope of horizontal and vertical speed ditching combinations 

that can compromise its structural integrity. 

I. Nomenclature 

𝛼 = angle of inclination of the under-surfaces with the horizontal (angle of deadrise) 

𝐶𝛼  = pressure coefficient due to trailing edge end-effects 

𝐹𝑣 = vertical component of the resultant pressure force acting on the body 

l = length of the body 

m = mass per unit length of the body 

M = total mass of the body 

𝑀𝑝 = total mass of the plate 

𝑉0 = initial vertical (impact) speed of the body 

𝑉 = instantaneous vertical speed of the body 

𝑉𝑥0 = initial horizontal ditching speed 

𝑉𝑦0 = initial vertical ditching speed 

𝑉𝑛 = equivalent ditching speed normal to the instantaneous water surface 

𝑥 = half width of the wedge at the plane of the undisturbed water surface 

𝑥𝑒𝑓𝑓  = effective half width of the wedge for added mass estimation 

𝑦 = depth of immersion normal to the plane of the undisturbed water surface 

𝛿𝑡𝑖𝑝 = wing tip deflection in vertical direction 

𝐼 = impulse from impact 

𝜔𝑓 = flapping frequency of the wing 

𝜇 = participating mass of the wing under flapping mode 

 

                                                           
1 Scientific Director, ESI Group, 3 bis rue Saarinen, 94528 Rungis, FRANCE. 
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II. Introduction 

“On 07 March 2014 at 1642 UTC a Malaysia Airlines (MAS) Flight MH370, a Beijing-bound international 

scheduled passenger flight, departed from Runway 32R, KL International Airport [KLIA] with a total of 239 persons 

on board (227 passengers and 12 crew). The aircraft was a Boeing 777-200ER, registered as 9M-MRO.” (extract from 

the Malaysian accident investigation report). 

A little bit later that day the aircraft vanished from the radars. Ever since, its whereabouts remain a mystery. 

In the years that followed, a very limited amount of debris has been recovered in the Indian ocean coastal lines of 

Africa, Mauritius and Isle de Reunion. From this debris, only three pieces have been formally identified as definitely 

belonging to that aircraft: the right flaperon, the right inner flap and the trailing edge of the left outer flap. 

Despite extensive search, no traces of the aircraft itself have been found and the case is (at least for now) closed 

after the final accident investigation reports from Malaysian authorities in 2018. 

Many scenarios have been proposed regarding what happened to this aircraft. 

The CAPTIO team has put forward a coherent account of the possible trajectory the aircraft would had followed, 

that satisfies as much as possible the available satellite and Air Traffic Control data, and it leads to a potential ditching 

close to the Christmas Islands. The details of this work can be found in the CAPTIO website http://mh370-captio.net/. 

The recovered confirmed debris of this flight holds the key to the aircraft final moments. In particular, the flaperon 

debris which has been extensively examined by the Direction Générale de l’ Armement (DGA) Ministry of Defense 

in France [1] and is pictured in Fig. 1, during its transfer for investigation. 

 

 

Fig. 1 Flaperon being recovered by the French authorities at Ile de La Réunion. 

 

What is very intriguing is the missing part of the trailing edge. The conclusion of the French report was that a 

ditching process was the most probable cause. The author who is a member of the CAPTIO team embarked to 

complement the DGA study by attempting to examine (as much as possible with the available data) the validity of the 

ditching assumption from a theoretical and a numerical (simulation) point of view. The findings were published in 

[2]. 

As the separation of the flaperon from the wing under such a scenario is suspected to be due to wing rupture, the 

ditching process of a wing is examined in this paper in a similar way as in [2]. 

III. Strategy for modelling ditching through numerical simulation 

Ditching involves fluid-structure interaction with large topology changes of the fluid because of the creation of 

waves during the penetration by the structure. One practical way to simulate ditching is to model the fluid with a 

particles method in order to allow large topological changes and mixing, that is, phenomena that are very difficult to 

be captured by traditional numerical methods, like the Finite Element method (FE) for instance. The particles method 

that was used to model the fluid (water) was the Smoothed Particle Hydrodynamics method (SPH). See Fig. 2 below 

for basic concepts. 
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Fig. 2 Foundation of SPH idealizations as compared to FE 

 

In order to choose the appropriate discretization of the fluid domain for ditching, a systematic investigation of the 

Von Karman wedge benchmark was done. The problem setup is as in Fig. 3 below corresponding to an infinitely long 

horizontal prismatic body with a wedge-shaped undersurface impacting vertically a semi-infinite fluid domain.  

 

 

Fig. 3 Definition of the Von Karman wedge from [3] 

 

The problem is essentially 2D as the third dimension that goes to infinity is self-similar, hence the problem 

corresponds to the class of “plane strain” problems. 

The simulations were done using the explicit transient dynamic code PAMCRASH of ESI Group [10] and using 

the 2D and 3D options for SPH modelling, as required. The material model for the water requires an appropriate 

Equation Of State (EOS). Although traditionally a polynomial EOS is used for water under impact, since in ditching 

(under the velocities we are interested) the water compressibility is very small, it is more efficient to adopt the 

Murnahan-Tait EOS [3,10]. 

Before proceeding with the simulations, the necessary theoretical foundation is presented below, and the 

PAMCRASH-based simulations are used to validate and complement this foundation. 

IV. Basic Von Karman theory for water impact of seaplane floats 

Von Karman [4] examined the problem of an infinitely long horizontal perfectly rigid prismatic body with a wedge-

shaped undersurface as it strikes vertically an infinitely long horizontal undisturbed surface of water in order to 

calculate analytically an estimate of the force per unit length acting between the body and the water at “first impact” 

stages. In his pioneering approach, he ignored the subsequent hydrodynamic flow effects, the viscosity or cavitation 

effects, any horizontal relative velocity to the sea and finally the “Archimedes” force (buoyancy), as he was interested 

at the “first impact” scenario. 

In this sense the problem is tackled from a “conservation of momentum” approach between the before impact and 

after impact state of the system, without any gravitational effects and in 2D. 
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Let 𝑚 be the mass per unit length of the body (seaplane), 𝛼 the angle of inclination of each of the wedge 

undersurfaces with the horizontal and 𝑦 the vertical distance the body travels in time from the initial point of impact 

with the water (depth of immersion). The time varying motion of the body within the water will provoke a disturbance 

in a mass of water beneath it, which will provide inertial resistance to the penetration. This is the “virtual mass”. Von 

Karman, using the 2D assumption, estimated the virtual mass to be equal to the mass of water contained in a semi-

cylinder of diameter equal to the width of the wedge at the plane of the undisturbed (original) water surface. 

The semi-cylindrical assumption for the virtual mass comes from the fact that a flat plate in 2D, fully immersed in 

a fluid and accelerating through it, experiences theoretically an added inertia from a mass of fluid that is contained 

within a circular cylinder of diameter equal to the width of the plate. The rear part of the plate experiences a suction 

force from the rear semi-cylinder of water while the front part a compression force from the forward semi-cylinder of 

water. In our case we have half the domain filled with air and half with water, hence only the semi-cylinder of water 

represents any added inertial force. 

The conservation of momentum at any time 𝑡 during the penetration then gives: 

 

           𝑚𝑉0 = 𝑚𝑉 +  
1

2
 π 𝑥2𝜌𝑉             (1) 

 

where 𝜌 is the water density and 𝑉0 the initial vertical speed. Setting the following for the instantaneous velocity: 

 

𝑉 =
𝑑𝑦

𝑑𝑡
= tan 𝛼 ∙

𝑑𝑥

𝑑𝑡
              (2) 

 

and using the following identity: 

 
𝑑2𝑥

𝑑𝑡2 =
𝑑

𝑑𝑥
[

1

2
(

𝑑𝑥

𝑑𝑡
)

2

]             (3) 

 

we can substitute Eq. (2) in Eq. (1) and using Eq. (3) we can obtain for a body with an out-of-plane length 𝑙 and 

total mass 𝑀, the instantaneous retardation as below: 

 
𝑑2𝑦

𝑑𝑡2 =
𝑉0

2 cot 𝛼

𝑀(1+
𝜌𝑙𝜋𝑥2

2𝑀
)

3 𝜌𝑙𝜋𝑥             (4) 

 

The associated vertical force 𝐹𝑣 can then be obtained from Newton’s law as: 

 

𝐹𝑣 = 𝑀
𝑑2𝑦

𝑑𝑡2 =
𝑉0

2 cot 𝛼

(1+
𝜌𝑙𝜋𝑥2

2𝑀
)

3 𝜌𝑙𝜋𝑥            (5) 

 

A. The Wagner correction and its modification by the author 

Wagner [5] examined the same problem by trying to take account of the wave generated by the body during its 

immersion in the water. Since the water displaced by the immersing body rises along its sides, the width of the wetted 

surface and the associated mass of the flow should be greater than those based on the flat width in the plane of the 

undisturbed surface, as Von Karman assumed. 
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Fig. 4 Definition of the Wagner “correction” 

 

Assuming that the water particles at the top of the water upflow move vertically up (see Fig. 4) and in accordance 

to the analytical 2D velocity profile for the water crest at the interface with an inclined flat plate being immersed in a 

horizontal water surface, he determined the “effective” width of the wedge at the tip of the wetted surface. He 

discovered that for a triangular cross section, which is the case for the wedged shape undersurface of Von Karman, 

that it is 1.57 (or 
𝜋

2
 ) times larger of that by Von Karman. 

This is sometimes termed as the “Wagner correction”, although it is not sure that Wagner was aware of Von 

Karman’s work as his approach was independent and different. 

Wagner proceeded to re-estimate the “virtual mass” of the fluid based on this risen wetted surface and this was 

consequently estimated as (
𝜋

2
)

2

 of that by Von Karman. This implied also that the resultant vertical force would be 

scaled by (
𝜋

2
)

2

 as compared to that of Von Karman. 

However, over the years it became evident that while Von Karman’s formula in equations Eq. 4, Eq. 5 and Eq. 6 

underestimated the resultant vertical force during immersion, the Wagner correction produced a force that greatly 

overestimated this force as compared to experimental measurements. 

Researchers like Mayo [6] gave a great account of the differences between the Von Karman and Wagner theory 

and all the efforts done to reconcile them, and all actually came down to a large effect to the definition of the added 

mass. 

The author believes that Von Karman’s estimation for the added mass appears to have a good theoretical 

foundation as a first guess, since at that time the means at his disposal were very limited. However, Wagner’s extension 

of basing the added mass on a cylinder whose radius is the “effective” width of the wedge at the tip of the wetted 

surface, appears not justifiable, as the fluid near the tip of the wetted surface is already part of the “spray” and is 

already moving tangentially, thus has already delivered its momentum to the wedge. Hence a cylinder thus defined 

will include much more fluid mass than the one that should be moving downwards with the plate. 

Payne [9] is one to seriously challenge the choice of added mass size by Wagner, in favour of that of Von Karman 

and in the process he quotes amongst other researchers the experimental results of Bisplinghoff at MIT in the 60s. 

These results showed that the actual “effective” width of the wedge (excluding spray which is physically present) 

should be on average between 1.2 and 1.35 times larger than that of Von Karman. 

In this paper we have no experimental results but we use high fidelity simulations (PAMCRASH code) for our 

work which include the spray and we have found that the best factor for correcting the Von Karman effective wedge 

width was about 1.25, and the corresponding hydrodynamic force comparisons for all cases of interest in this article 

were very encouraging, as it will be shown in the rest of the paper. Since 1.25 is practically √
𝜋

2
 and for the sake of 

similarity with the existing equations we can define the effective wedge width for added mass definition as: 

 

           𝑥𝑒𝑓𝑓 = √
𝜋

2
 𝑥𝑉𝑜𝑛𝐾𝑎𝑟𝑚𝑎𝑛             (6) 
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The consequence of the above is that the added mass now will be scaled by 
𝜋

2
 as compared to that of Von Karman 

and similarly the corresponding hydrodynamic force. Substituting Eq. (6) to Eq. (1) for 𝑥 and repeating the derivation 

of the hydrodynamic force we get: 

 

𝑭𝒗 =
𝝅

𝟐

𝟐
𝑽𝟎

𝟐
𝝆𝒍𝒙 𝐜𝐨𝐭 𝜶

(𝟏+
𝝆𝒍𝝅𝟐𝒙𝟐

𝟒𝑴
)

𝟑            (7) 

 

It is very challenging to visualize the added mass in ditching but one “imaginative” way through simulation can 

be to depict the part of the fluid that moves downwards with the body at any given instant. 

A wedged object was modelled as a rigid body using the PAMCRASH code and it impacted a stationary mass of 

water (modelled with SPH 2D technology as explained earlier). 

The geometry of the wedge was such it makes an angle of 30 degrees with the undisturbed surface of the water 

and the prescribed immersion speed was 10 m/s. 

Figure 5 below attempts to show the added masses based on the Von Karman (yellow), Wagner (blue) and the 

author (red). 

 

 

Fig. 5 Added masses according to Von Karman (yellow), Wagner (blue) and the author (red) 

 

The initial undisturbed fluid is shown in order to allow the definition of the Von Karman added mass that uses the 

undisturbed surface as reference. 

It can be seen that the Von Karman added mass (based on 𝑥) does not include some of the fluid that moves 

significantly downwards and certainly not any part from the water elevation at the crest, by definition, while the 

Wagner added mass (based on 
𝜋

2
𝑥) contains a lot of fluid that is not moving downwards or is moving within the 

“spray” at the crest that is not part of the added mass, as shown by Bisplinghoff. 

The definition from the author (in red, based on √
𝜋

2
𝑥) extends the Von Karman added mass to include parts of the 

fluid still participating in the downward motion plus includes the effective width of Bisplinghoff (the part of the crest 

that has contour colours showing vertical motion), hence it is a reasonable compromise and hints visually to why the 

results of this paper shown later on are encouraging. 

The wedge numerical (SPH) model presented above was subjected to a vertical impact of 2.65 m/s with a variable 

mass of 1.5 kg, 4 kg and 8.6 kg. The evolution of the vertical force as a function of the immersion 𝑦 of the wedge is 

displayed in Fig. 6, 7 and 8 as compared to the theoretically predicted force from Eq. (7). 
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Fig. 6 Force versus immersion depth comparison between simulation and theory – 1.5 kg wedge 

 

Fig. 7 Force versus immersion depth comparison between simulation and theory – 4 kg wedge 

 

Fig. 8 Force versus immersion depth comparison between simulation and theory – 8.6 kg wedge 
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V. Adaptation of the Von Karman theory to a flat plate at vertical impact 

Noting that an inclined flat plate under vertical impact resembles half the Von Karman wedge, one can assume 

that the associated vertical force evolution during vertical immersion will basically be half the force predicted by the 

Von Karman wedge but adjusted by a coefficient that represents the force reduction due to the end-effects. This is to 

compensate for the change of flow around the lowest end of the plate which is no longer the apex of a wedge but an 

open end. 

Important point is that M in Eq. (7) is the total mass of the equivalent Karman wedge and this is double the mass 

of the flat plate 𝑀𝑝.  

𝑀 = 2𝑀𝑝               (8) 

 

Hence dividing Eq. (7) by 2 and using Eq. (8) we get: 

 

𝑭𝒗 = 𝑪𝜶 (
𝝅

𝟐
)

𝟐
𝑽𝟎

𝟐
𝝆𝒍𝒙 𝐜𝐨𝐭 𝜶

(𝟏+𝝆𝒍𝝅𝟐𝒙𝟐

𝟖𝑴𝒑
)

𝟑          (9) 

 

where 𝐶𝛼is a coefficient that is inclination dependent and modifies the force according to its end-effects and to any 

minor adjustments regarding to the choice of Eq. (7) for the effective wedge width. 

The coefficients 𝐶𝛼 were previously obtained by the author [2] as a function of inclination 𝛼 : 

 

𝐶𝛼 ~ 1.3561 − 0.206 ln 𝛼𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠          (10) 

or 

Table 1 Evolution of 𝐶𝛼 versus 𝛼 

 

𝛼 (degrees) 𝐶𝛼 

15 16

20
 

30 13

20
 

45 11.5

20
 

 

The reason for introducing the coefficient 𝐶𝛼 is shown pictorially in Fig. 9 which exposes the different flow around 

the apex of the plate as compared to the original wedge. (see Kamoulakos [2]) 

 

 

Fig. 9 Velocity vector contours for the Von Karman wedge and flat plate vertical impact 

 

The flat plate in the above configuration (30 degrees inclination) was simulated under initial vertical speed of 41.76 

m/s and 4 kg mass. The evolution of the vertical force as a function of the immersion 𝑦 of the plate is displayed in 

Fig. 10 as compared to the theoretically predicted force from Eq. (9). 
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Fig. 10 Force versus immersion depth comparison between simulation and theory – 4 kg plate 

 

VI. Adaptation of the Von Karman theory to a flat plate at inclined impact 

For a vertical immersion of a wedge, it is obvious that the only velocity that matters is the vertical one and the 

pressure applied to the wedge surfaces during immersion has a zero resultant in the horizontal direction due to 

symmetry, while only the vertical force component on the two surfaces matters and it is additive. 

However, this is not the case for a half wedge, ie, a flat plate, the resultant pressure from the flow field evolution 

will have a horizontal and vertical resultant force. Equation (9) will provide only the vertical force based on Von 

Karman’s theory, since it was obtained from vertical momentum conservation only. 

Considering what kinematics disturb the water and provide the flow around the plate one can see that it is not the 

vertical velocity that really matters but the effective velocity normal to the plate which will disturb the flow and 

provoke the associated hydrodynamic forces. Under the assumptions of this paper, any inclined plate with a velocity 

vector aligned along the plate surface will enter the water like an arrow and “not disturb” the water (the thickness of 

the plate is not a geometric parameter, only its surface, and under these conditions it is invisible to the fluid). 

We can rewrite Eq. (9) with respect to the vertical distance variable 𝑦 as below: 

 

𝐹𝑣 = 𝐶𝛼 (
𝜋

2
)

2

𝑉0

2
𝜌𝑙𝑦(cot 𝛼)2

(1+𝜌𝑙𝜋2𝑥2

8𝑀𝑝
)

3            (11) 

 

Defining the velocity component normal to the plate as: 

 

𝑉𝑛 = 𝑉0 cos 𝛼               (12) 

 

and realizing that this velocity is the sum of the projections of the horizontal 𝑉𝑥0 and vertical velocities 𝑉𝑦0 of the plate 

as below: 

 

𝑉𝑛 = 𝑉𝑥0 sin 𝑎 + 𝑉𝑦0 cos 𝛼             (13) 

 

we can rewrite Eq. (11) in the following form: 

 

𝑭𝒗 = 𝑪𝜶 (
𝝅

𝟐
)

𝟐
(𝑽𝒙𝟎 + 𝑽𝒚𝒐 𝐜𝐨𝐭 𝜶)

𝟐 𝝆𝒍𝒚

(𝟏+𝝆𝒍𝝅𝟐𝒙𝟐

𝟖𝑴𝒑
)

𝟑      (14) 
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Equation (14) gives us an estimate of the vertical force evolution on an inclined flat plate under inclined immersion 

due to initial (not prescribed) horizontal and vertical speeds of 𝑉𝑥0 and 𝑉𝑦𝑜 respectively. 

Furthermore, in the publication by Kamoulakos [2], an equivalence between inclined ditching and vertical 

immersion was demonstrated, for the “first impact” stage, that is, for the stage of monotonic vertical immersion (the 

part of the ditching where the object vertical velocity is downwards). The following table was quoted in [2] for flat 

plate inclination 𝛼 of 30 degrees, containing an example of velocity combinations: 

 

Table 2 Equivalence between inclined ditching and vertical immersion [2] 

 

𝑉𝑥0 
(m/s) 

𝑉𝑦0 

(m/s) 

𝑉𝑛 
(m/s) 

𝑉0 
(m/s) 

55 10 36.16 41.76 

55 20 44.82 51.75 

50 30 50.98 58.87 

68.42 2.54 36.41 42.04 

68.42 5.08 38.61 44.58 

70 20 52.32 60.41 

 

To demonstrate the validity of Eq. (14), the above highlighted case of initial horizontal speed 𝑉𝑥0 of 55 m/s and 

an initial vertical one 𝑉𝑦0 of 10 m/s was examined and compared to the theory for only vertical immersion with initial 

vertical speed 41.76 m/s (zero horizontal speed at all times). 

The simulation model of the flat plate inclined at 30 degrees was used to simulate the plate at the abovementioned 

inclined impact setup and the vertical force evolution from the simulation results is presented against the Eq. (14) one 

in Fig. 10 as below. 

 

 

Fig. 11 Force versus immersion depth: blue 55 m/s horizontal – 10 m/s vertical speeds simulation, orange 

41.76 m/s theory 

 

We can see from Fig. 10 that the comparison is favorable. 

To further examine the validity of the equivalence between vertical immersion (slamming) and inclined ditching, 

a model of a typical wing-type body was simulated. The model was obtained from public domain CAD data for a 

B777-type wing and it is reasonably representative for this type of exercise. The part from the engine outwards was 

modelled, with a span of 23.6 m which is roughly 2/3 of the B777 wingspan. 

The wing was modelled as a “rigid body” to be compliant with this exercise, and it was placed horizontal with the 

inclination angle of 13 degrees. The sea was modelled by SPH particles. 
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Two simulations with PAMCRASH were done: 

 one with the ditching scenario of initial horizontal speed of 70 m/s and initial vertical speed of 3 m/s 

 one with the equivalent vertical slamming scenario of 19 m/s initial vertical speed (all other directions 

constrained) which is obtained from Eq. (12) and (13) 

Figures (12) and (13) show the wing sea impact for those two scenarios as below: 

 

 

Fig. 12 Inclined ditching of a wing – initial and final position 

 

 

Fig. 13 Equivalent vertical slamming simulation of wing – initial and final position 
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Figure 14 shows the comparison of the corresponding vertical force evolution. 

 

 

Fig. 14 Simulation results for vertical force versus depth of immersion evolution / Equivalence between 

inclined ditching and vertical slamming 

It can been that the resultant vertical force evolution in the two cases is very similar, validating the fact that there 

is an equivalence between vertical slamming and inclined ditching, that is, for every combination of horizontal and 

vertical speeds in inclined water impact there is an equivalent vertical impact speed that produces very similar force 

evolution. 

This observation allows us to reduce significantly the size of the simulation models when we want to obtain an 

order of magnitude of the “first impact” peak load and time duration in ditching, quantities that define the impulse 

upon the wing. The reduction in model size comes from the fact that we need to model only the sea adjacent to the 

wing and not the sea that participates in the planning of the wing in inclined ditching, which is quite disproportionately 

large and the corresponding modelling with SPH particles is very computer processing intensive (CPU). 

Another observation is that the peak load can arrive very early on the structure during ditching. Figure 13 below 

shows the moment of peak load during the simulation of the above inclined ditching scenario. 

 

 

Fig. 15 Inclined ditching 70 m/s – 3 m/s, moment of maximum load 
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This observation allows us to have a reasonable order of magnitude of the impulse using a rigid model, as the wing 

elastic deformation that follows (which can be significant), will be to a good extend the consequence of this initial 

impulse. 

The wing model was simulated with a very high mass, no gravity and a vertical speed of 15.34 m/s (which 

corresponds to the same inclined ditching speed setup but at 10 degrees inclination). The force versus vertical 

immersion force evolution is showed below in Fig. 16 and compared to the corresponding theoretical curve. 

 

Fig. 16 Force versus immersion depth: blue 70 m/s horizontal – 3 m/s vertical speeds simulation, purple 

15.34 m/s theory (vertical slamming) 

 

It can be seen that the correspondence is quite good; the apparent shift in the curves is due to the fact that the 

theoretical result is obtained from the Von Karman theory where the entire plate is flat and at 10 degrees inclination, 

which is different from the wing used where the section has only an average inclination of 10 degrees and variable 

spanwise chord. 

The above force-depth evolution, if plotted as force-time evolution, it will give the impulse upon the wing at “first 

impact” due to the ditching event. This will be presented in a follow-up publication. 

VII. Linking to the Flaperon publication [2] 

As mentioned in the introduction regarding the MH370 disappearance, the recovery of the right wing flaperon 

with the trailing edge missing implied the action of hydrodynamic forces. A “missed” (uncontrolled) ditching scenario 

appears as a credible one, possibly with a “right wing first impact” at a significant right-roll inclination. 

In such a case the flaperon would impact the water with the prescribed motion of the wing, as the flaperon mass is 

negligible compared to that of the wing. This is the reason why in [2] the mass of the flaperon was considered infinite, 

so that it conveys the inertia of the wing during the ditching. The corresponding equations where adapted accordingly. 

However, the impact of the wing with the water needs a combination of the wing mass and part of the aircraft mass 

in order to assess the forces upon ditching. This is because with a “right wing first impact” scenario, part of the aircraft 

inertia will pass through the wing (we do not assume a fuselage underbelly first impact). Hence the need to adapt the 

full Von Karman equations that include the mass of the impactor. 

From all possible wing ditching scenarios, the admissible combinations of horizontal and vertical speeds are those 

that will result in the failure of the attached flaperon trailing edge in the way examined in [2]. Hence the need to 

combine the outcome of this paper with that of [2]. 

Further on, and for reasons beyond this publication, it appears possible that the recovered flaperon was separated 

from the wing due to wing rupture from excessive deformation / loads during this uncontrolled ditching. 

In order to assess this, a simplified elastic model of the wing is needed, for “order of magnitude” analysis, as no 

numerical model of an elastic B777 wing is in our possession. 
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The wingbox obtained from Fig. 17 was parametrized using Engineer’s Theory of Bending and Bedt-Batho theory 

in order to achieve a stiffness that can give about 1.9 m wing tip deflection at MTOW. 

 

 

Fig. 17 Basis of B777 wingbox sectional properties for a simplified model that respects limit and ultimate 

loads response 

The wing tip deflection at MTOW was estimated from the testing to failure of the B777 wing which is quoted as 

24 ft at 1.54 limit load. 

The estimated simplified spanwise variable flexural properties of the wingbox and associated mass distribution 

were used to make a 10 beam Finite Element model using the code ADBLST from Kamoulakos [14] which allows 

distinct center of area, center of mass and shear center at each section. The associated tip deflection from aerodynamic 

loads at MTOW was thus obtained. 

Similarly, the wing eigen modes were obtained using the code ADBLDYN (Kamoulakos [14]) with a first wing 

flapping mode frequency 𝜔𝑓 (without the engine) of about 6.88 rad/s (1.1 Hz). This is the mode that would participate 

most during the ditching process under this level of approximation. The engine was not included as during a severe 

ditching event it will separate from the wing. 

The wing was simulated as explained in the previous section under vertical impact for the range and combination 

of velocities that can produce rupture of the trailing edge of the flaperon (as defined by the equations of [2]). The 

triangular pulse upon impact (like in Fig. 15 but in time) would give the peak force and the duration, which gives the 

impulse 𝐼. 

An order of magnitude of the tip deflection will then be obtained from Eq. (15). 

𝛿𝑡𝑖𝑝 =
𝐼

𝜇𝜔𝑓
              (15) 

where 𝜔𝑓 is the flapping frequency of the wing and 𝜇 the participating mass. 

Wing fracture would then be expected as probable if 𝛿𝑡𝑖𝑝 calculated from Eq. (15) is of the order of 24 ft or more 

(see Fig. 18). 

 

Fig. 18 Envelope of ditching scenarios for possible wing fracture 
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VIII. Conclusion 

Motivated by the recovery of the MH370 Boeing 777 right wing flaperon debris and the associated suspicion that 

its damage was due to a ditching scenario, the author continued his previously published work on the flaperon [2] by 

assessing the forces exerted by fluid-structure interaction upon a wing-like body under ditching, both analytically and 

numerically. 

In this respect the author modified the Von Karman water impact theory by suitably redefining the added mass 

estimation and adapting it to a wing-like body with a finite mass under ditching. He then obtained a simple analytical 

relation for the total hydrodynamic force as a function of horizontal and vertical speeds and angle of impact. Validation 

of the analytically obtained force to that obtained by Smoothed Particle Hydrodynamics (SPH) water simulations was 

very favorable. 

The analytical work in this paper further confirmed the suggestion in [2] of the existence of an equivalence between 

inclined ditching and vertical slamming of a wing-like body with the relative speed normal to the water surface as the 

link. This is of significance as it allows to drastically reduce the sizes of the numerical models for parametric evaluation 

and the corresponding CPU usage, by modelling the sea in the vicinity of the wing (under equivalent slamming) and 

not all along its trajectory in ditching. It can have also value in devising simpler and smaller experimental setups for 

laboratory testing of ditching. 

Finally, as far as the pursue of resolving the MH370 puzzle is concerned, the foundation was put in linking the 

envelope of wing responses under ditching to those that correspond to the flaperon damage in order to identify the 

most probable sea impact scenarios. 
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